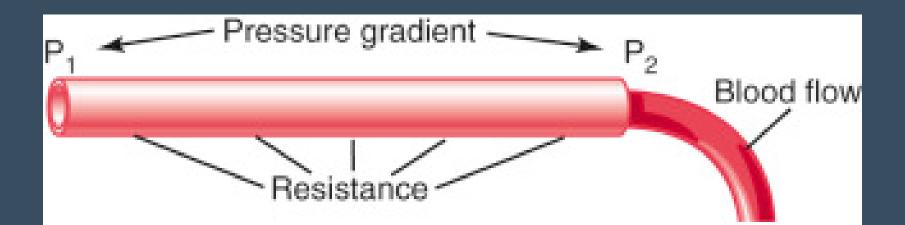
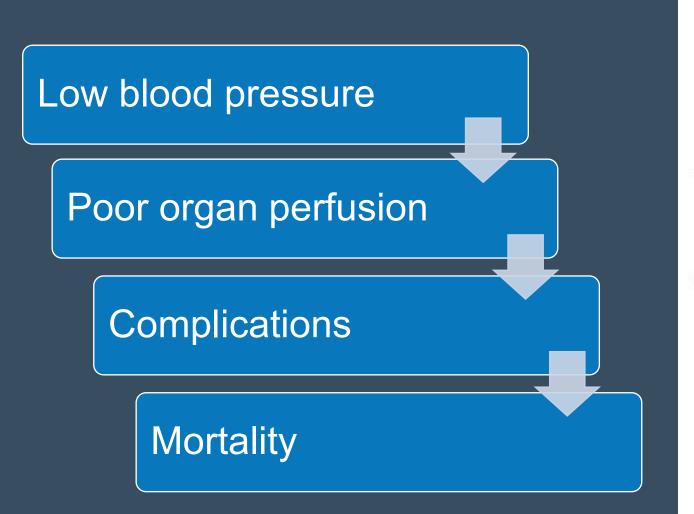
Hypotension and Outcomes

Kamal Maheshwari MD MPH Associate Professor of Anesthesiology @kamalmaheshwar7

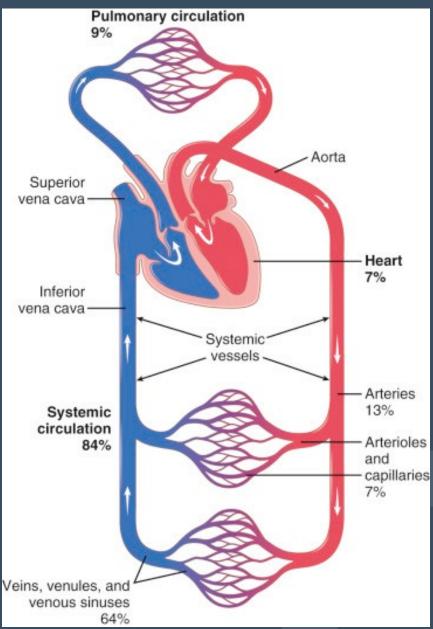


• Why should we avoid hypotension?

- To maintain organ perfusion
- To optimize the quality of care
- To avoid complications
- To optimize cost
- How hypotension should be avoided?
 - Prediction
 - Appropriate diagnosis
 - Appropriate treatment


Organ Perfusion

Perfusion \rightarrow Flow per unit tissue weight.



$$F=rac{\pi arDeta {
m Pr}^4}{8\eta l}$$

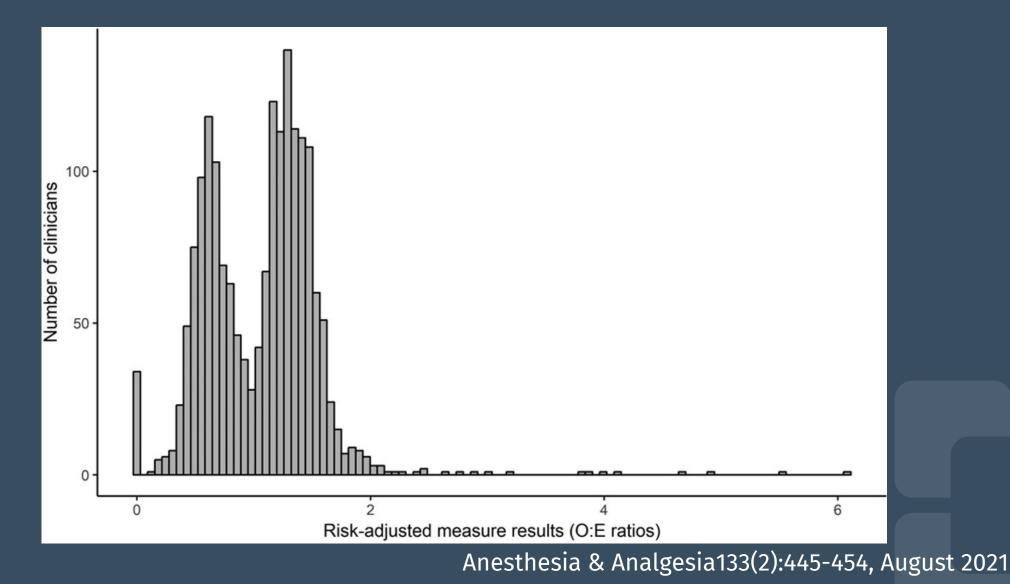
Guyton and Hall Textbook of Medical Physiology, Chapter 14, 169-178

Guyton and Hall Textbook of Medical Physiology, Chapter 14, 169-178

Quality

- "the degree to which health care services for individuals and populations <u>increase the</u> <u>likelihood of desired health outcomes</u> and are consistent with current professional knowledge"
- "by empowering perioperative teams to explore variation in practice and identify opportunities for change"

Institute of Medicine https://mpog.org/quality/


Low blood pressure

Mortality Readmission LOS

Leading indicators

Lagging indicators

Hypotension as quality metric

Hypotension as quality metric

Patient Safety

III ORIGINAL CLINICAL RESEARCH REPORT

Development and Evaluation of a Risk-Adjusted Measure of Intraoperative Hypotension in Patients Having Nonemergent, Noncardiac Surgery

Anna L. Christensen, PhD,* Ethan Jacobs, MPP,† Kamal Maheshwari, MD, MPH,‡ Fei Xing, PhD,* Xiaohong Zhao, PhD,§ Samuel E. Simon, PhD,† Karen B. Domino, MD, MPH,∥ Karen L. Posner, PhD,∥ Alvin F. Stewart, MD,¶ Joseph A. Sanford, MD,¶ and Daniel I. Sessler, MD#

 <u>Metric:</u> Number of cases in one year who qualify for hypotension which is defined as MAP <65 mm Hg for 15 minutes per case

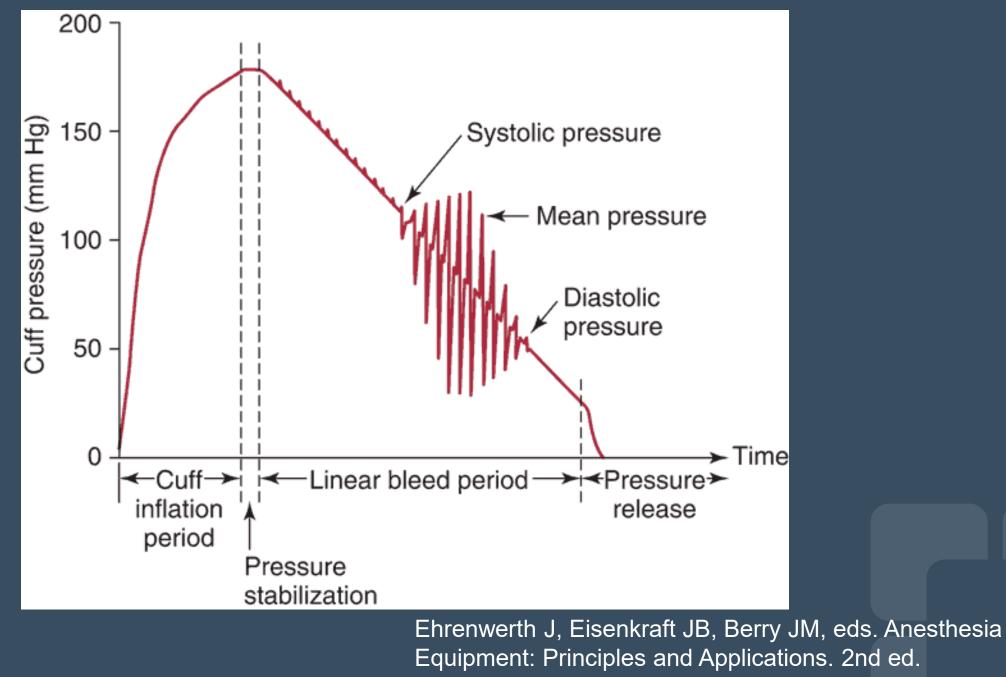
Improve Patient Outcomes with the New Intraoperative Hypotension Quality Measure

Approved by the Centers for Medicare & Medicaid Services (CMS) as a Qualified Clinical Data Registry (QCDR) measure within the Merit-Based Incentive Payment System (MIPS) reporting program, the Intraoperative Hypotension (IOH) quality measure supports an increasing desire for objective quality measurement and reporting.

This IOH Measure encourages qualified anesthesia providers to maintain an intraoperative mean arterial pressure (MAP) above 65 mmHg in order to reduce the risk of adverse outcomes such as acute kidney injury and myocardial injury.

ePreop is co-stewarding the IOH Measure with the Cleveland Clinic to promote awareness around non-emergent, noncardiac cases in which a patient's MAP falls below 65 mmHg for a cumulative total of 15 minutes or more.

Complications


- 25% (around \$1 trillion) of US healthcare spending is waste
 - Avoidable complications
 - Unnecessary readmissions
- Postoperative complications are third leading cause of death [global]

Shrank, JAMA,2019 Nepogodiev, Lancet, 2019

Hypotension and complications

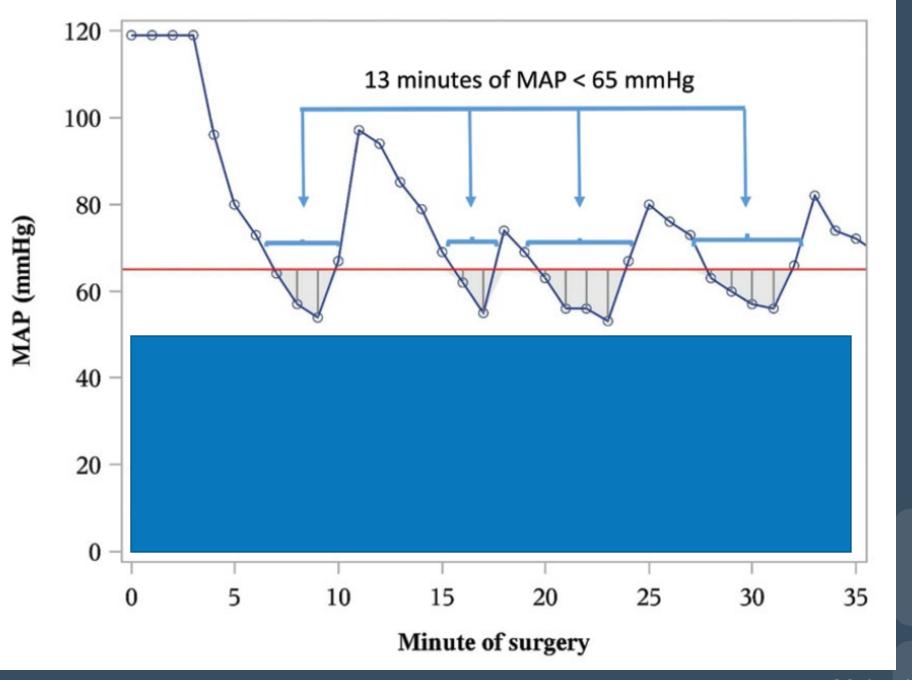
- Operating room
- Ward
- Critical care units

Philadelphia, PA: Elsevier Saunders; 2013: Figure 12-1

Babbs *BioMedical Engineering OnLine* 2012, **11**:56 http://www.biomedical-engineering-online.com/content/11/1/56

RESEARCH

BioMedical Engineering OnLine


Open Access

Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model

Charles F Babbs

Abstract

Background: The oscillometric method of measuring blood pressure with an automated cuff yields valid estimates of mean pressure but questionable estimates of systolic and diastolic pressures. Existing algorithms are sensitive to differences in pulse pressure and artery stiffness. Some are closely guarded trade secrets. Accurate extraction of systolic and diastolic pressures from the envelope of cuff pressure oscillations remains an open problem in biomedical engineering.

Maheshwari, A&A, 2018

THE LANCET

Volume 371, Issue 9627, 31 May-6 June 2008, Pages 1839-1847

Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial

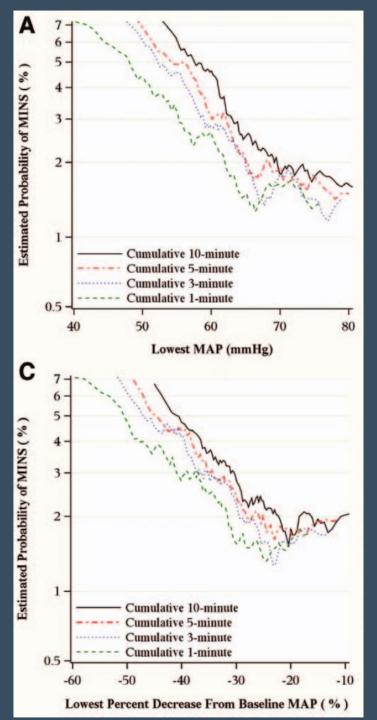
Lancet 2008; 371: 1839-47

Published Online
May 13, 2008
DOI:10.1016/S0140-
6736(08)60601-7

	Adjusted odds ratio (95% CI)	Frequency of risk factor n (%)	PAR* (95% CI)
Death			
Preoperative independent predictors			
No use of statin in 24 h before surgery	1.73 (1.22-2.46)	5674 (67.9%)	33.7% (18.3-53.6)
Age ≥70 years	1.65 (1.20-2.26)	4387 (52.5%)	29.3% (16.2-47.0)
Emergent/urgent surgery	3.71 (2.68-5.14)	878 (10-5%)	24·4% (18·0–32·2)
Serum creatinine >175 µmol/L	2.67 (1.75-4.08)	401 (4.8%)	9.5% (5.4–16.0)
History of congestive heart failure	1.76 (1.14-2.72)	535 (6.4%)	6.0% (2.5-13.6)
Use of low-molecular-weight heparin in 24 h before surgery	1·74 (1·14–2·68)	556 (6.7%)	5.9% (2.4-13.8)
Intraoperative and postoperative predictors			
Clinically significant hypotension	4.97 (3.62-6.81)	1029 (12·3%)	37.3% (29.5-45.8)
Myocardial infarction without ischaemic symptoms	3·45 (2·20-5·41)	271 (3·3%)	10.6% (6.4–17.0)
Significant bleeding	1.67 (1.14-2.44)	553 (6.6%)	9.4% (4.3-19.5)
Stroke	18·97 (9·93 - 36·25)	60 (0.7%)	8.0% (5.0-12.5)
Clinically significant bradycardia	2.13 (1.37-3.32)	351 (4.2%)	7·9% (3·9–15·3)
Myocardial infarction with ischaemic symptoms	3.31 (1.78-6.15)	144 (1.7%)	4·2% (1·9-9·2)
Total explained			85.5% (78.8-90.4)

Relationship between Intraoperative Mean Arterial Pressure and Clinical Outcomes after Noncardiac Surgery

Toward an Empirical Definition of Hypotension


Association of Intraoperative Hypotension with Acute Kidney Injury after Elective Noncardiac Surgery

Louise Y. Sun, M.D., S.M., Duminda N. Wijeysundera, M.D., Ph.D., Gordon A. Tait, Ph.D., W. Scott Beattie, M.D., Ph.D.

Association between Intraoperative Hypotension and Hypertension and 30-day Postoperative Mortality in Noncardiac Surgery

Terri G. Monk, M.D., M.S., Michael R. Bronsert, Ph.D., M.S., William G. Henderson, M.P.H., Ph.D., Michael P. Mangione, M.D., S. T. John Sum-Ping, M.D., Deyne R. Bentt, M.D., C.P.H.I.M.S., Jennifer D. Nguyen, M.D., Joshua S. Richman, M.D., Ph.D., Robert A. Meguid, M.D., M.P.H., Karl E. Hammermeister, M.D.

Walsh, Anesthesiology, 2013 Monk, Anesthesiology 2015 Sun, Anesthesiology 2015

Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery

A Retrospective Cohort Analysis

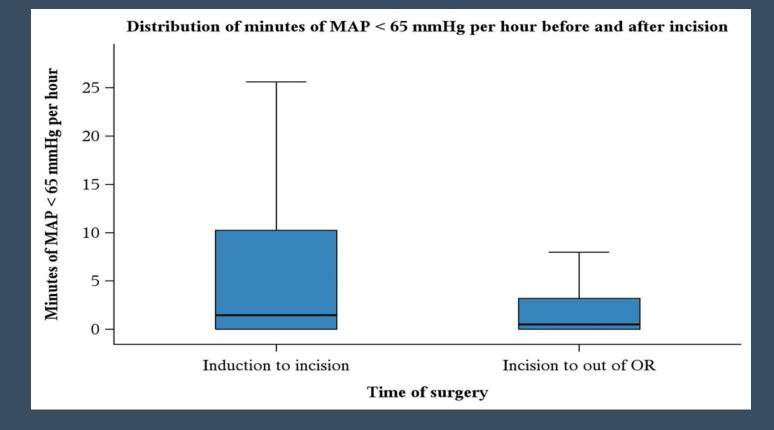
Vafi Salmasi, M.D., Kamal Maheshwari, M.D., M.P.H, Dongsheng Yang, M.A, Edward J. Mascha, Ph.D, Asha Singh, M.D, Daniel I. Sessler, M.D, Andrea Kurz, M.D

- Absolute MAP 65 vs. relative 20-25% MAP threshold similar
- Baseline pressure no interaction

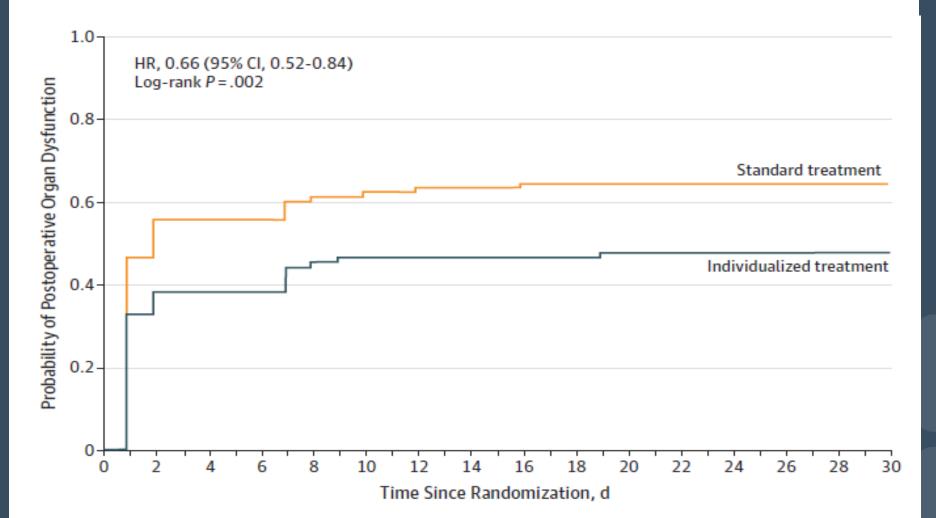
ANESTHESIOLOGY

Associations of Intraoperative Radial Arterial Systolic, Diastolic, Mean, and Pulse Pressures with Myocardial and Acute Kidney Injury after Noncardiac Surgery

A Retrospective Cohort Analysis


Sanchit Ahuja, M.D., Edward J. Mascha, Ph.D., Dongsheng Yang, M.S., Kamal Maheshwari, M.D, M.P.H., Barak Cohen, M.D., Ashish K. Khanna, M.D., F.C.C.P., F.C.C.M., Kurt Ruetzler, M.D., Alparslan Turan, M.D., Daniel I. Sessler, M.D. *ANESTHESIOLOGY 2020; 132:291–306*

- 90 mmHg for systolic
- 65 mmHg for mean
- 50 mmHg for diastolic
- 35 mmHg for pulse pressure.


Original Article

The association of hypotension during non-cardiac surgery, before and after skin incision, with postoperative acute kidney injury: a retrospective cohort analysis

K. Maheshwari,¹ A. Turan,¹ G. Mao,² D. Yang,² A. K. Niazi,³ D. Agarwal,⁴ D. I. Sessler⁵ and A. Kurz⁶

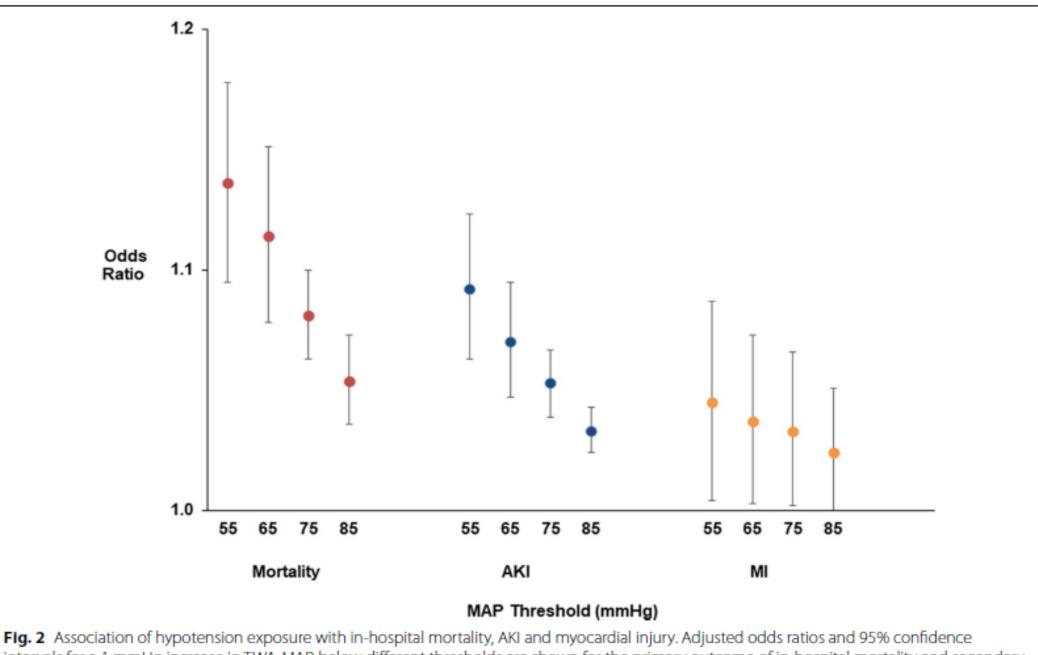
 One-third of all hypotension happened before surgery start JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery A Randomized Clinical Trial

		Reference	Hypotension	No hypotension	OR	OR	Weight (%) Definition*	Duration	Outcome event
							gin (/o	, 20111101	2 4. 4. 60	
		Cardiac subgroup Kheterpal McLean House <i>et al.</i> ⁴⁶ Sessler <i>et al.</i> ⁵³	33 of 2854 163 of 38 024 249 of 3404	47 of 4758 29 of 8566 418 of 6361		1.17 (0.75, 1 1.27 (0.85, 1 1.12 (0.95, 1	.88) 4.1	MAP < 60 MAP< 60 SBP < 90 requiring therapy	n.a. n.a. n.a.	Combined cardiac MI Combined cardiac
		van Waes <i>et al.</i> ⁵⁷ Xu <i>et al.</i> ⁶⁰ Sabate <i>et al.</i> ⁵¹ von Knorring <i>et al.</i> ⁵⁸	26 of 450 66 of 455 35 of 313 12 of 49	12 of 440 63 of 967 111 of 3074 18 of 549	* *	2.19 (1.09, 4 2.43 (1.69, 3 3.36 (2.25, 5 9.57 (4.29, 2	.51) 4.2 .01) 4.1	MAP < 60 Combined 1 Combined 2 SBP > 30% decrease	30 min 10 min 60 min 10 min	MI Combined cardiac Combined cardiac MI
		Hallqvist <i>et al.</i> ⁴¹ Total Heterogeneity: <i>I</i> ² = 90%	8 of 34 45 583	7 of 266 24 981		11.38 (3.82,33 2.44 (1.52, 3	3.91) 2.3	SBP > 50% decrease	5 min	MI
		Renal subgroup Ellis <i>et al.</i> ³⁹ Brinkman <i>et al.</i> ³⁸	17 of 44 7 of 35	66 of 140 1 of 5		0.71 (0.35, 1 1.00 (0.10, 1		MAP < 60 MAP < 65	5 min n.a.	AKI AKI
		Hallqvist <i>et al.</i> ⁴⁰ Sun <i>et al.</i> ⁵⁴ Thakar <i>et al.</i> ⁵⁶	89 of 286 298 of 4373 15 of 100	38 of 184 26 of 754 27 of 390	*	1.74 (1.12, 2 2.05 (1.36, 3 2.37 (1.21, 4	.68) 4.0 .08) 4.0 .65) 3.3	SBP > 40% decrease MAP < 60 MAP < 60	5 min 1 min n.a.	AKI AKI AKI
		Mizota <i>et al.</i> ⁴⁷ Tallgren <i>et al.</i> ⁵⁵ Yu <i>et al.</i> ⁶¹ Total	66 of 198 7 of 11 78 of 176 5223	5 of 33 8 of 58 29 of 486 2050		2.80 (1.03, 7 - 10.94 (2.60, 4 12.54 (7.77, 2 2.69 (1.31, 5	6.04) 1.7 0.25) 3.9	MAP < 50 MAP < 60 MAP < 70	1 min 15 min 5 min	AKI AKI AKI
		Heterogeneity: $I^2 = 89\%$	$\tau^2 = 0.8632, P <$: 0.01						
		Stroke subgroup Hsieh <i>et al.</i> ⁸ Total Heterogeneity: n.a.	77 of 387 387	27 of 115 115	-	0.81 (0.49, 1 0.81 (0.49, 1		MAP < 70	n.a.	Stroke
•	Intra	Delirium aubgroup Hirsch <i>et al.</i> ⁴² Marcantonio <i>et al.</i> ⁴⁴ Patti <i>et al.</i> ⁴⁹ Total Heterogeneity: <i>I</i> ² = 81%	8 of 32 27 of 352 8 of 18 $\tau^2 = 0.6610, P <$	170 of 508 90 of 989 10 of 82 1579 : 0.01		0.66 (0.29, 1 0.83 (0.53, 1 5.76 (1.84, 1 1.32 (0.47, 3	.30) 3.9 8.03) 2.2	MAP < 50 Combined 4 MAP < 60	n.a. n.a. n.a.	Delirium Delirium Delirium
		Any nectournical com	Dication subgr 130 of 801 2 23 of 81	oup 258 of 1720 15 of 60	-	1.10 (0.87, 1 1.19 (0.56, 2	.54) 3.1	MAP<55 MAP > 30% decrease	n.a. n.a.	SSI Combined surgical
	posto morta	Matsota <i>et al.</i> ⁴⁵ Post <i>et al.</i> ⁵⁰ Ziser <i>et al.</i> ⁶² Total Heterogeneity: / ² = 83%	28 of 66 13 of 205 117 of 261 1414 $\tau^2 = 0.2575, P <$			2.12 (1.24, 3 2.64 (0.58, 1 2.84 (2.05, 3 1.76 (1.04, 2	1.97) 1.6 .94) 4.2	MAP > 20% decrease SBP > 40% decrease MAP > 20% decrease	n.a. n.a. 10 min	Headache Anastomotic leaka Any complication
	۸ ·	Pooled association for Heterogeneity: / ² = 88%, Residual heterogeneity:	$\tau^2 = 0.4080, P <$	0.01	0.1 0.5 1 2 10	2.08 (1.56, 2	.77) 100.0%			
•	A uni	Mortality subgroup White <i>et al.</i> ⁵⁹ Roshanov <i>et al.</i> ²²	415 of 8578 133 of 4162	94 of 2233 169 of 10525	-	1.16 (0.92, 1 2.02 (1.61, 2	.55) 4.4	MAP < 75 SBP < 90	n.a. n.a.	Mortality Mortality
	hypo	Monk <i>et al.</i> ⁴⁸ Bijker <i>et al.</i> 9 Total Heterogeneity: / ² = 88%	117 of 3407 53 of 652 16 799 $\tau^2 = 0.1314, P < 0.1314$	217 of 15349 35 of 1053 29 160 : 0.01	•	2.48 (1.97, 3 2.57 (1.66, 3 1.94 (1.32, 2	.99) 4.0	MAP < 55 SBP < 80	5 min 1 min	Mortality Mortality
	hypo topic	Overall Heterogeneity: <i>I</i> ² = 88%	69 808 $\tau^2 = 0.3034, P <$	60 597 : 0.01	0.1 0.5 1 2 10	2.04 (1.16, 2	.57) 100.0%			
	Reduced risk of complication Increased risk of complication									

with , and

Of rch into this

ANESTHESIOLOGY


Incidence, Severity, and Detection of Blood Pressure Perturbations after Abdominal Surgery

A Prospective Blinded Observational Study

Alparslan Turan, M.D., Christine Chang, M.D., Barak Cohen, M.D., M.H.A., Wael Saasouh, M.D., Hani Essber, M.D., Dongsheng Yang, M.S., Chao Ma, M.S., Karen Hovsepyan, M.D., Ashish K. Khanna, M.D., F.C.C.P., F.C.C.M., Joseph Vitale, B.S., Ami Shah, D.O., Kurt Ruetzler, M.D., Kamal Maheshwari, M.D., M.P.H., Daniel I. Sessler, M.D.

ANESTHESIOLOGY 2019; 130:00-00

- Both hypotension and hypertension are common, prolonged, and profound in surgical wards.
- Often missed by routine intermittent monitoring.

intervals for a 1 mmHg increase in TWA-MAP, below different thresholds are shown for the primary outcome of in-hospital mortality and secondary outcomes of acute kidney injury and myocardial injury

-867


3-5218-5

Organ perfusion and cardiac output

- Are we ignoring the cardiac output?
- Between CO or MAP which is more important?

• CO = (MAP - CVP)/SVR

$$F=rac{\pi \Delta {
m Pr}^4}{8\eta l}$$

Maheshwari, BJA, 2021

ORIGINAL RESEARCH

OPEN ACCESS

Hospital costs associated with intraoperative hypotension among non-cardiac surgical patients in the US: a simulation model

Eric L. Keuffel^a (D), John Rizzo^b, Mitali Stevens^c, Candace Gunnarsson^d and Kamal Maheshwari^e

^aHealth Finance & Access Initiative, Bryn Mawr, PA, USA; ^bStony Brook University Medical Center, Stony Brook University (New York), Stony Brook, NY, USA; ^cEdwards Lifesciences, Irvine, CA, USA; ^dGunnarsson Consulting, Jupiter, FL, USA; ^eCleveland Clinic, Cleveland, OH, USA

 The model results suggest improved intraoperative hypotension control in a hospital (10,000 surgery) is associated with mean cost reductions ranging from \$1.2-\$4.6 million per year. JOURNAL OF MEDICAL ECONOMICS 2019, VOL. 22, NO. 4, 383–389 https://doi.org/10.1080/13696998.2019.1576695 Article 0216-FT.R1/1576695

ORIGINAL RESEARCH

OPEN ACCESS

A Monte Carlo simulation estimating US hospital cost reductions associated with hypotension control in septic ICU patients

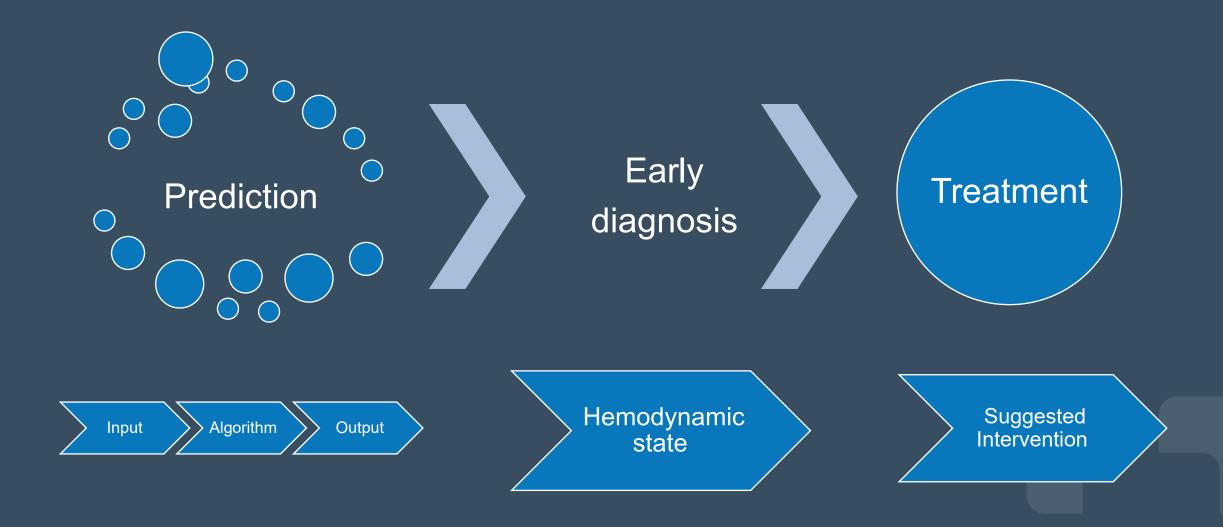
Eric L. Keuffel^a, Mitali Stevens^b, Candace Gunnarsson^c, John Rizzo^d, Daniel I. Sessler^e and Kamal Maheshwari^e

^aHealth Finance & Access Initiative, Chester, PA, USA; ^bEdwards Lifesciences, Irvine, CA, USA; ^cGunnarsson Consulting, Jupiter, FL, USA; ^dDepartment of Family, Population and Preventive Medicine, Program in Public Health, Stony Brook University, Stony Brook, NY, USA; ^eCleveland Clinic, Cleveland, OH, USA

- Hospital with1,000 annual sepsis cases in the ICU would save
- \$417,000 per year based on a 5-mmHg increase (95% CI: \$187,000-\$696,000) and \$600,000 per year for a 10-mmHg increase (95% CI:\$268,000-\$1,046.000).

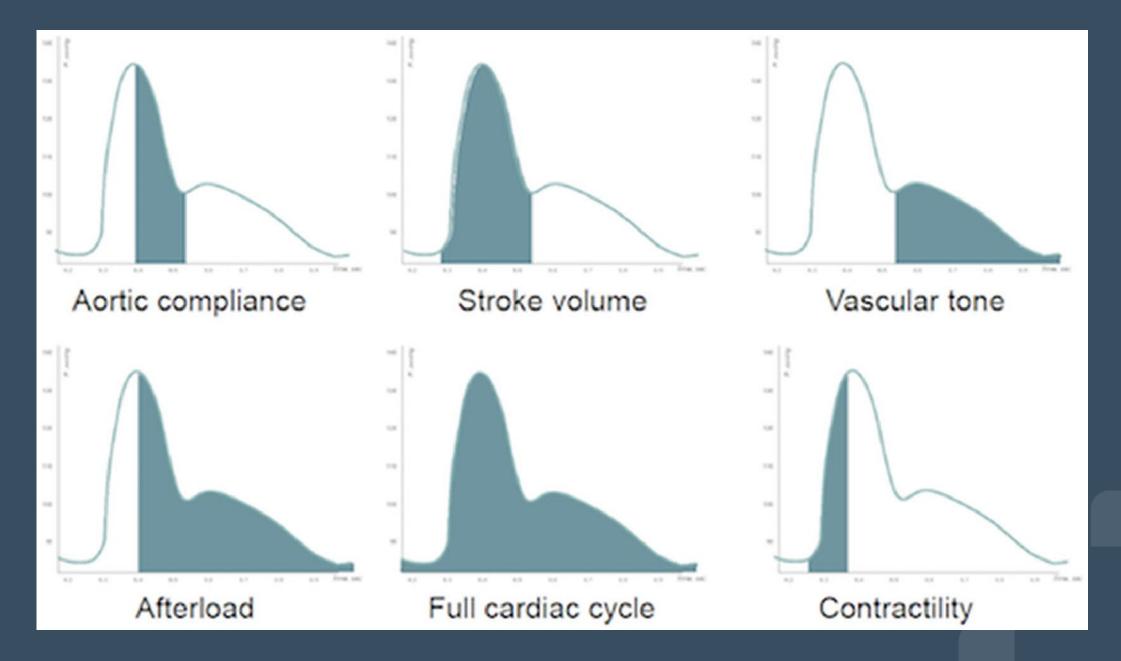
Key message

- Hypotension is associated with kidney injury, myocardial injury, delirium, and mortality, therefore should be avoided
 - To maintain organ perfusion
 - To avoid complications
 - To optimize the quality of care
 - To optimize cost


POISE Trial, Lancet 2008 Futier, JAMA 2017; INPRESS Trial Salmasi, Anesthesiology 2017 Maheshwari, A&A, 2019

How do we prevent hypotension?

Team effort


Maheshwari et al, Anesthesia and Analgesia, 2022

Blood pressure: the input data

Intermittent : Oscillometric Continuous: Invasive Non-invasive

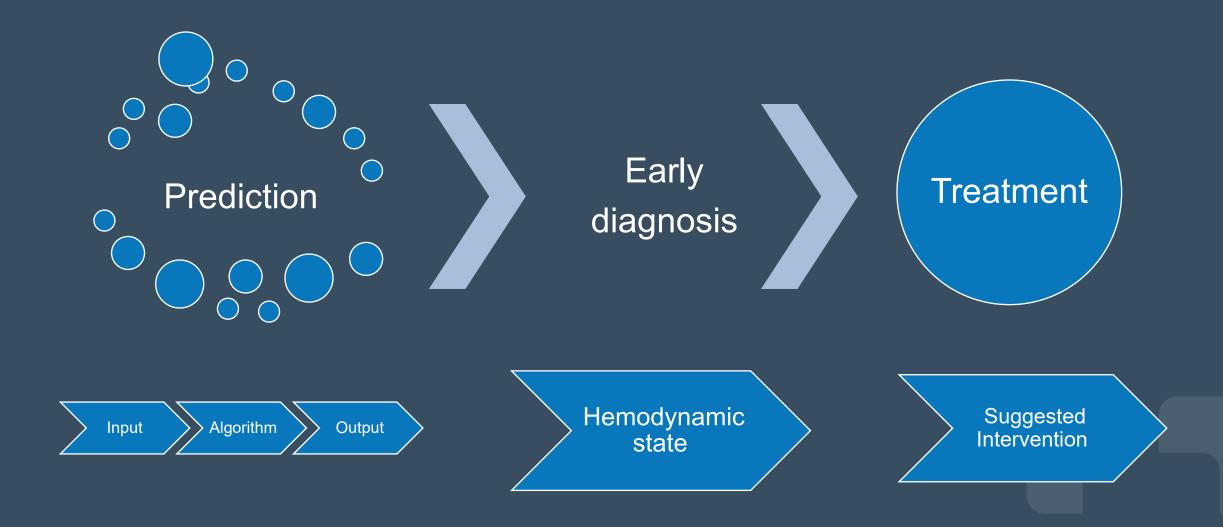
Awadallah, JCVA, 2021

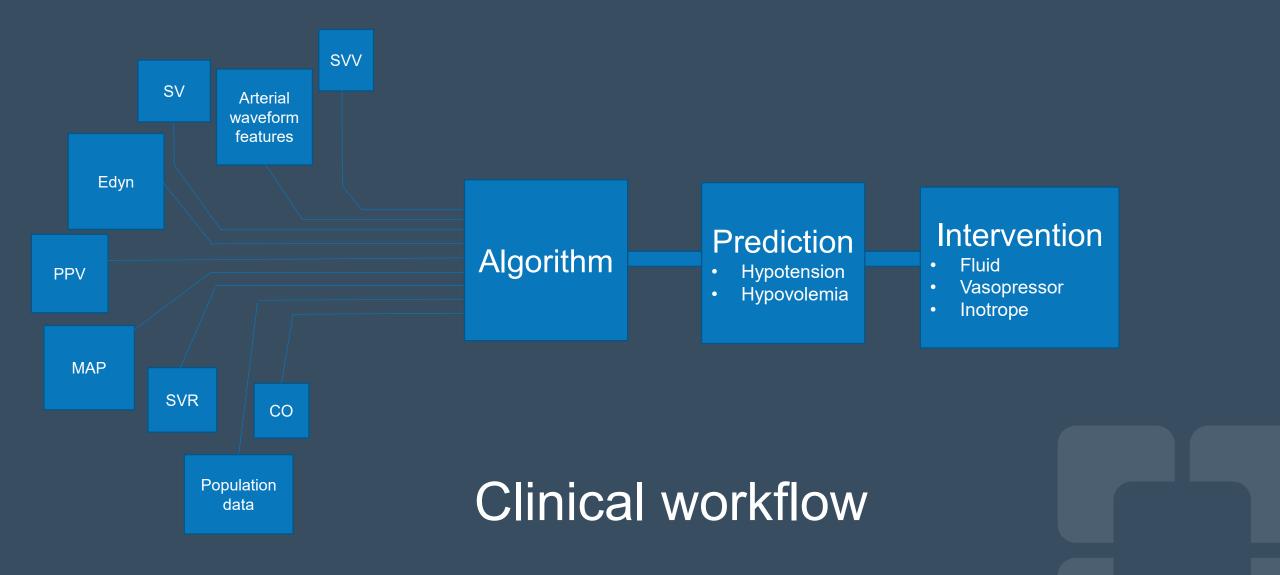
Advanced hemodynamic parameters

Venous or tissue oximetry	Cardiac output	Pre-load		Afterload
SvO2	CO	SVV	GEDI	SVR / SVRI
StO2	CI	PPV	CVP	Eadyn
ScvO2	SV	RVEDV	PASP/PADP	PVR/ PVRI
	SVI	GEDI	PAOP	

Contractility	Lung water	Blood pressure	Predictive
dP/dt	EVLW	SBP	HPI
EF	EVLWI	DBP	AFM
Echocardiography		MAP	
Pressure volume graphs		PP	

Blood pressure measurement

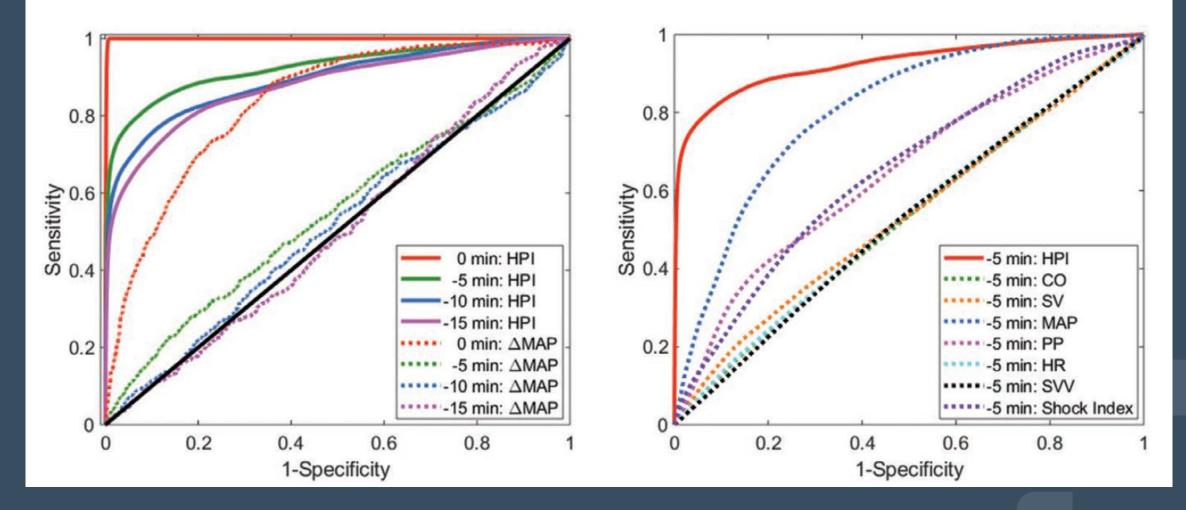

Intermittent


- Valid mean arterial pressure
 - Systolic and diastolic are derived parameters
- Intermittent
- Lack advanced hemodynamic parameters
- Lack prediction parameters

Continuous

 Continuous invasive or noninvasive arterial pressure monitoring can reduce hypotension

> Maheshwari, Anesthesia and Analgesia, 2018 Michard, Intensive care medicine, 2018 Naylor, Anesthesia and Analgesia 2019



Prediction of Hypotension 5 Minutes Before the Event

Receiver operating characteristic curves for the ability of the Hypotension Prediction Index to predict hypotension at 5

Prediction of Hypotension 10 Minutes Before the Event

Receiver operating characteristic curves for the ability of the Hypotension Prediction Index to predict hypotension at 10

Davies, Anesthesia and Analgesia 2019

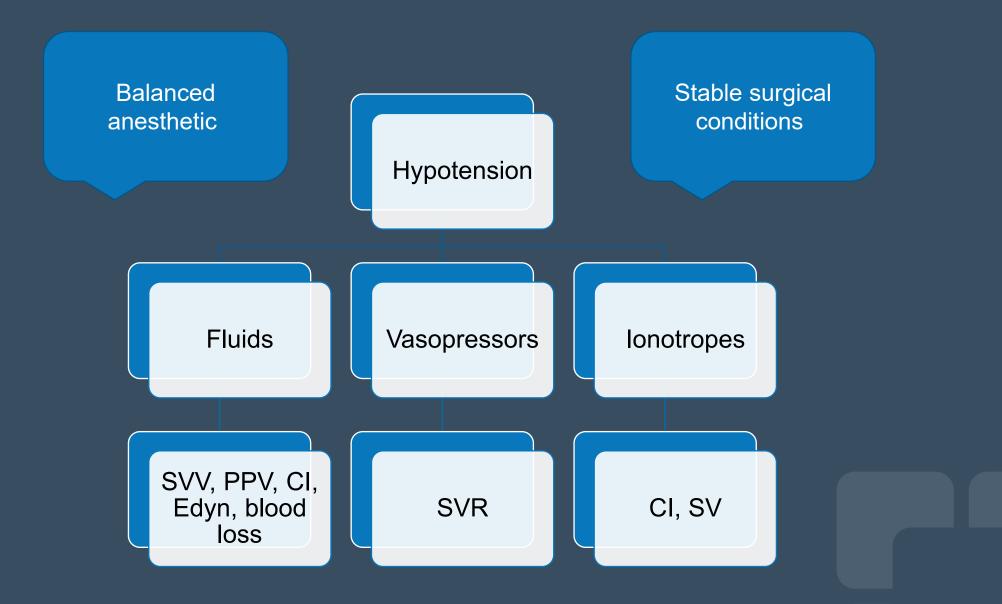
HPI evaluation trials

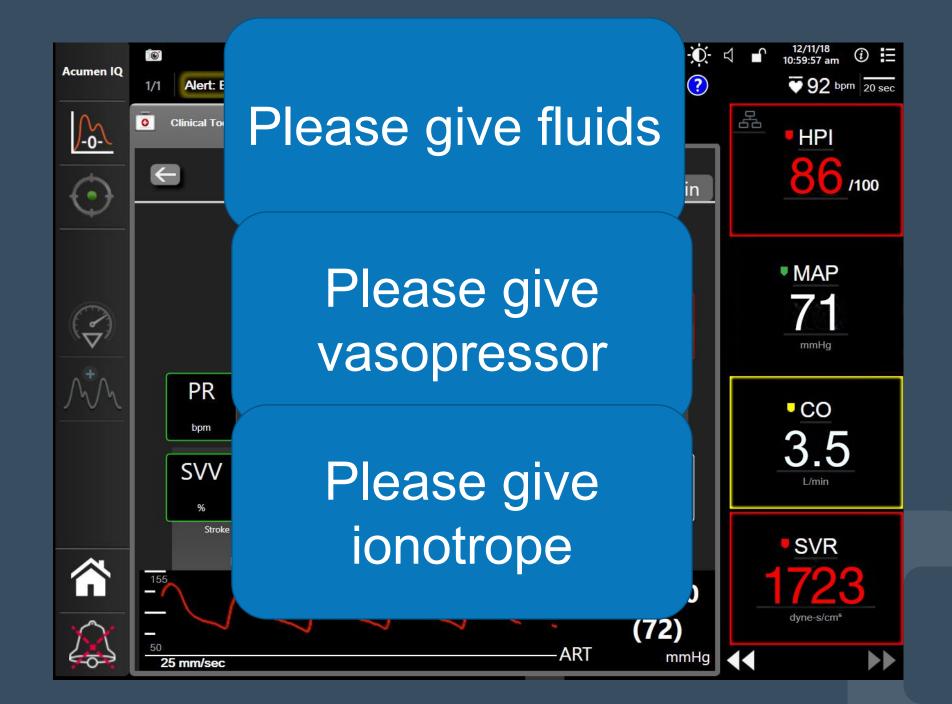
Effect of a Machine Learning–Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery The HYPE Randomized Clinical Trial

Marije Wijnberge, MD; Bart F. Geerts, MD, PhD, MSc, MBA; Liselotte Hol, MD; Nikki Lemmers, MD; Marijn P. Mulder, BSc; Patrick Berge, MD; Jimmy Schenk, MSc; Lotte E. Terwindt, MD; Markus W. Hollmann, MD, PhD; Alexander P. Vlaar, MD, PhD, MBA; Denise P. Veelo, MD, PhD

HPI multicenter study SMART BP trial

ANESTHESIOLOGY


Hypotension Prediction Index for Prevention of Hypotension during Moderate- to High-risk Noncardiac Surgery


A Pilot Randomized Trial

Kamal Maheshwari, M.D., M.P.H., Tetsuya Shimada, M.D., Ph.D., Dongsheng Yang, M.S., Sandeep Khanna, M.D., Jacek B. Owinski, M.D., Samuel A. Irefin, M.D., Sabry Ayad, M.D., Alparslan Turan, M.D., Kurt Ruetzler, M.D., Yuwei Qiu, M.D., Partha Saha, M.D., Edward J. Mascha, Ph.D., Daniel I. Sessler, M.D.

ANESTHESICLOGY 2020; XXX 00-00

Appropriate treatment

AFM is Effective and Safe

 AFM recommended and completed bolus led to around 60% increase in stroke volume compared to

ANESTHESIOLOGY

Assisted Fluid Management Software Guidance for Intraoperative Fluid Administration

Kamal Maheshwari, M.D., M.P.H., Gaurav Malhotra, M.D., Xiaodong Bao, M.D., Ph.D., Peiman Lahsaei, M.D., William R. Hand, M.D., Neal W.Fleming, M.D., Ph.D., Davinder Ramsingh, M.D., Miniam M. Tieggiari, M.D., Ph.D., M.P.H., Daniel I. Sessler, M.D., Timothy E. Miller, M.B.Ch.B., on behalf of the Assisted Fluid Management Study Team*

ANESTHESIOLOGY 2021; XXX:00-00

Vasopressor use

- Systemic vascular resistance SVR
 Difficult to measure
- Dynamic elastance Edyn
 - defined as the PPV/SVV ratio, accurately predicts the arterial pressure response after volume administration in hypotensive, preload-dependent patients with acute circulatory failure.
 - < 0.89 will not increase MAP with volume expansion

Monge Garcia, Critical care, 2011

Inotrope use

- Cardiac contractility
 - LV contractility via echocardiography
 - Cardiac output trends
 - dP/dt from arterial pressure waveform
 - combined interaction of the LV ejection and the arterial system properties

Future

- SMART BP trial
- Decision support systems
- Direct organ perfusion sensors
 - Microdialysis
 - CO2 sensors

Summary

- Hypotension is associated with kidney injury, myocardial injury, delirium, mortality and should be avoided
- Hypotension reduction strategies include
 - Continuous invasive or noninvasive blood pressure monitoring
 - Hypotension prediction and appropriate treatment algorithms

E Cleveland Clinic

Every life deserves world class care.